Lifted Aggregation in Directed First-Order Probabilistic Models

نویسندگان

  • Jacek Kisynski
  • David Poole
چکیده

As exact inference for first-order probabilistic graphical models at the propositional level can be formidably expensive, there is an ongoing effort to design efficient lifted inference algorithms for such models. This paper discusses directed first-order models that require an aggregation operator when a parent random variable is parameterized by logical variables that are not present in a child random variable. We introduce a new data structure, aggregation parfactors, to describe aggregation in directed first-order models. We show how to extend Milch et al.’s C-FOVE algorithm to perform lifted inference in the presence of aggregation parfactors. We also show that there are cases where the polynomial time complexity (in the domain size of logical variables) of the C-FOVE algorithm can be reduced to logarithmic time complexity using aggregation parfactors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aggregation and Constraint Processing in Lifted Probabilistic Infrence

Representations that mix graphical models and first-order logic—called either firstorder or relational probabilistic models—were proposed nearly twenty years ago and many more have since emerged. In these models, random variables are parameterized by logical variables. One way to perform inference in first-order models is to propositionalize the model, that is, to explicitly consider every elem...

متن کامل

Constraint Processing in Lifted Probabilistic Inference

First-order probabilistic models combine representational power of first-order logic with graphical models. There is an ongoing effort to design lifted inference algorithms for first-order probabilistic models. We analyze lifted inference from the perspective of constraint processing and, through this viewpoint, we analyze and compare existing approaches and expose their advantages and limitati...

متن کامل

Lifted Inference for Probabilistic Logic Programs

First-order model counting emerged recently as a novel reasoning task, at the core of efficient algorithms for probabilistic logics such as MLNs. For certain subsets of first-order logic, lifted model counters were shown to run in time polynomial in the number of objects in the domain of discourse, where propositional model counters require exponential time. However, these guarantees apply only...

متن کامل

First-Order Bayes-Ball

Efficient probabilistic inference is key to the success of statistical relational learning. One issue that increases the cost of inference is the presence of irrelevant random variables. The Bayes-ball algorithm can identify the requisite variables in a propositional Bayesian network and thus ignore irrelevant variables. This paper presents a lifted version of Bayes-ball, which works directly o...

متن کامل

Lifted Relax, Compensate and then Recover: From Approximate to Exact Lifted Probabilistic Inference

We propose an approach to lifted approximate inference for first-order probabilistic models, such as Markov logic networks. It is based on performing exact lifted inference in a simplified first-order model, which is found by relaxing first-order constraints, and then compensating for the relaxation. These simplified models can be incrementally improved by carefully recovering constraints that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009